Newcastle Disease Virus V Protein Targets Phosphorylated STAT1 to Block IFN-I Signaling
نویسندگان
چکیده
Newcastle disease virus (NDV) V protein is considered as an effector for IFN antagonism, however, the mechanism remains unknown. In this study, the expression of STAT1 and phospho-STAT1 in cells infected with NDV or transfected with V protein-expressing plasmids were analyzed. Our results showed that NDV V protein targets phospho-STAT1 reduction in the cells depends on the stimulation of IFN-α. In addition, a V-deficient genotype VII recombinant NDV strain rZJ1-VS was constructed using reverse genetic technique to confirm the results. The rZJ1-VS lost the ability to reduce phospho-STAT1 and induced higher expression of IFN-responsive genes in infected cells. Furthermore, treatment with an ubiquitin E1 inhibitor PYR-41 demonstrated that phospho-STAT1 reduction was caused by degradation, but not de-phosphorylation. We conclude that NDV V protein targets phospho-STAT1 degradation to block IFN-α signaling, which adds novel knowledge to the strategies used by paramyxoviruses to evade IFN.
منابع مشابه
Mumps virus V protein antagonizes interferon without the complete degradation of STAT1.
Mumps virus (MuV) has been shown to antagonize the antiviral effects of interferon (IFN) through proteasome-mediated complete degradation of STAT1 by using the viral V protein (T. Kubota et al., Biochem. Biophys. Res. Commun. 283:255-259, 2001). However, we found that MuV could inhibit IFN signaling and the generation of a subsequent antiviral state long before the complete degradation of cellu...
متن کاملSTAT2 is a primary target for measles virus V protein-mediated alpha/beta interferon signaling inhibition.
Measles virus, a member of the Morbillivirus family, infects millions of people each year despite the availability of effective vaccines. The V protein of measles virus is an important virulence factor that can interfere with host innate immunity by inactivating alpha/beta interferon (IFN-alpha/beta) and IFN-gamma signaling through protein interactions with signal transducer and activator of tr...
متن کاملThe NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling.
Flaviviruses transmitted by arthropods represent a tremendous disease burden for humans, causing millions of infections annually. All vector-borne flaviviruses studied to date suppress host innate responses to infection by inhibiting alpha/beta interferon (IFN-alpha/beta)-mediated JAK-STAT signal transduction. The viral nonstructural protein NS5 of some flaviviruses functions as the major IFN a...
متن کاملThe C Proteins of Human Parainfluenza Virus Type 1 Block IFN Signaling by Binding and Retaining Stat1 in Perinuclear Aggregates at the Late Endosome
Interferons (IFNs) play a crucial role in the antiviral immune response. Whereas the C proteins of wild-type human parainfluenza virus type 1 (WT HPIV1) inhibit both IFN-β induction and signaling, a HPIV1 mutant encoding a single amino acid substitution (F170S) in the C proteins is unable to block either host response. Here, signaling downstream of the type 1 IFN receptor was examined in Vero c...
متن کاملThe STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of alpha interferon signaling.
Sendai virus (SeV) C protein functions as an interferon (IFN) antagonist and renders cells unresponsive to both alpha/beta IFN (IFN-alpha/beta) and IFN-gamma. We have recently found the physical association of the C protein with signal transducer and activator of transcription 1 (STAT1) in infected cells. However, involvement of the C-STAT1 interaction in the blockade of IFN signaling has remai...
متن کامل